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ABSTRACT 
 
 

PC and MNF transforms are two widely used methods that are utilized for various 

applications such as dimensionality reduction, data compression and noise reduction.  In 

this thesis, an in-depth study of these two methods is conducted in order to estimate their 

performance in hyperspectral imagery. 

First the PCA and MNF methods are examined for their effectiveness in image 

enhancement.  Also, the various methods are studied to evaluate their ability to determine 

the intrinsic dimension of the data.  Results indicate that, in most cases, the scree test 

gives the best measure of the number of retained components, as compared to the 

cumulative variance, the Kaiser, and the CSD methods. 

Then, the applicability of PCA and MNF for image restoration are considered 

using two types of noise, Gaussian and periodic.  Hyperspectral images are corrupted by 

noise using a combination of ENVI and MATLAB software, while the performance 

metrics used for evaluation of the retrieval algorithms are visual interpretation, rms 

correlation coefficient spectral comparison, and classification.  In Gaussian noise, the 

retrieved images using inverse transforms indicate that the basic PC and MNF transform 

perform comparably.  In periodic noise, the MNF transform shows less sensitivity to 

variations in the number of lines and the gain factor. 
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I. INTRODUCTION 

A. MOTIVATION 

There are strong motivations for acquiring information remotely in both civilian 

and military applications.  The need to track changes in the environment, as with the need 

to acquire information of military relevance, motivates the field of remote sensing.  The 

discipline can trace its origins to aerial photography as far back as the American Civil 

War, when aerial photographs were taken from balloons – an approach that continued 

into World War I.  Technological advances made possible the use of infrared (IR) and 

microwave electromagnetic radiation during World War II.  Following World War II, 

rapid advances in remote sensing technology were achieved.  The concurrence of three 

developments enabled these advances: the advent of orbiting spacecraft, digital 

computing, and pattern recognition technology [10].  In 1972, the launch of the Earth 

Resources Technology Satellite (later renamed Landsat 1) marked the advent of remote 

sensing from space using multispectral sensors.  The founders of the field made an early 

decision that space-based remote sensing would focus on spectral variations instead of 

spatial characteristics in imagery (David Landgrebe, Landgrebe Symposium 2003). 

This paradigm for remote sensing makes use of the material-dependent character 

of the observed radiation reflected or emitted from materials depending on their 

molecular composition and shape.  Beginning in the 1980’s, spectral imagery evolved 

from the multispectral world of Landsat and Advanced Very High Resolution Radiometer 

(AVHRR) to the higher dimensionality of hyperspectral systems. 

Multispectral sensors (e.g. Landsat, AVHRR) measure radiation reflected at a few 

wide, separated spectral bands – typically 5 to 7 bands.  Hyperspectral sensors measure 

reflected radiation at a series of narrow and contiguous spectral bands – typically 

hundreds of bands.  This characteristic of hyperspectral imagery provides the potential 

for more accurate and detailed information extraction. 

Hyperspectral imagery contains a wealth of data, but interpreting it is a difficult 

task for several reasons.  First, the data volume can be quite large – often 100’s of 

megabytes (MB) per scene.  Second, data are distorted by additive noise from the 
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atmosphere, the instrument making the measurements, and the data quantization 

procedure.  Finally, the spectrum of a pixel usually contains the response to more than 

one material - that is the pixels are not pure.  The analysis process is characterized by 

data that contain a high degree of redundancy.  These characteristics motivate a need for 

preprocessing techniques to facilitate the effective analysis of hyperspectral image data. 

The analysis of spectral imagery typically requires atmospheric compensation, 

dimensionality reduction, and image enhancement.  The purpose of implementing these 

procedures is to facilitate usage of spectral libraries, to reduce the computational 

complexity and to eliminate noise.  A fundamental principle when implementing these 

procedures is that all the useful information must be preserved. 

One of the most well-known techniques for dimensionality reduction while 

preserving the information in hyperspectral data is the principal components analysis 

(PCA) family of techniques.  Additionally, PCA techniques have proven effective in the 

noise reduction of image data. 

Based on the above considerations, the motivation of this thesis is to investigate 

the applicability of the principal components analysis techniques in dimensionality 

reduction and image enhancement in order to enable improved analysis and information 

extraction from spectral imagery. 

B. OBJECTIVES 

The objective of this thesis is to conduct an in-depth study of the principal 

components family of techniques as applied to hyperspectral data for compression and 

noise reduction.  More specifically, research goals can be summarized as follows: 

• To investigate the applicability of PCA-based techniques for dimensionality 

reduction. 

• To compare Principle Components (PC) and Minimum Noise Fraction (MNF) 

methods in reducing noise from hyperspectral images. 

• To address the issue of determining the intrinsic dimension of data. 
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C. ORGANIZATION OF THE REPORT 

This thesis is organized as follows: Chapter II discusses the fundamental concepts 

of hyperspectral remote sensing by emphasizing the analysis of the noise that is contained 

in hyperspectral images.  Chapter III, describes the two PCA methods investigated in this 

thesis, principal components (PC) and minimum noise fraction (MNF), and studies the 

application of principal components analysis techniques in hyperspectral images for 

dimension reduction without the loss of significant information.  Also, methods for 

determining the intrinsic dimension of data are explored.  Chapter IV examines the 

applicability of PC and MNF for image restoration, considering two types of noise, 

Gaussian and periodic.  Chapter V provides concluding remarks and suggestions for 

future work. 
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II. FUNDAMENTALS OF HYPERSPECTRAL REMOTE 
SENSING 

A. BASIC CONCEPTS 

1. Hyperspectral Remote Sensing 

Spectral images are collected by remote sensing instruments, which are typically 

carried by airplanes or satellites.  As these platforms move along their flight paths, the 

instruments scan across a swath perpendicular to the direction of motion.  The data from 

a series of such swaths form a two-dimensional image. 

Sensors that collect remote sensing data are typically opto-electronic systems that 

measure reflected solar irradiance.  Spectral imagers record this reflected energy at a 

variety of wavelengths.  Early earth imaging systems, such as Landsat, did this in a few 

relatively broad bands that were not-contiguous, that is, there were gaps in the spectral 

coverage.  Hyperspectral sensors typically measure brightness in hundreds of narrow, 

contiguous wavelength bands so that for each pixel in an image, a detailed spectral 

signature can be derived.  The term hyperspectral is used to reflect the large number of 

bands, but the contiguous (complete) spectral coverage is also an important component to 

the definition.  The bands need to be narrow enough to resolve the spectral features for 

targets of interest, a requirement that can lead to bands from a few nanometers in width to 

tens of nanometers. 

Figure 1 illustrates the different characteristics of multispectral and hyperspectral 

data, and the differing spectral resolution.  A hyperspectral image can be viewed as a 

cube with spatial information represented in the X-Y plane.  The third dimension, which 

is the Z-direction, is the spectral domain represented by hundreds of narrow, contiguous 

spectral bands corresponding to spectral reflectance.  Figure 2 shows a representative 

hyperspectral image, or hypercube, with spatial dimensions 1024 by 614, and spectral 

data of 224 contiguous bands, from 0.4 µm to 2.5 µm.  This image is a red, green, blue 

composite formed using bands 43 (769.68 nm), 17 (539.40 nm), and 10 (470.76 nm). 
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Figure 1. Typical pixel’s spectrum from multispectral and hyperspectral images. 

 

 

 

 

 

 

 

 

 

 

Figure 2. A typical hyperspectral Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) datacube of 224 bands from Jasper Ridge in California. 
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2. Characteristics of Electromagnetic Radiation 

Hyperspectral imagery involves the sensing of electromagnetic radiation.  The 

electromagnetic spectrum that is used in remote sensing includes the ultraviolet (UV), 

visible, infrared, and microwave portions of the spectrum.  Figure 3 illustrates the 

wavelength regions of the electromagnetic spectrum.  The spectral portions of near IR 

and short wave infrared (0.7-3.0 µm) are called the reflective infrared because measured 

radiation in this spectral region is mostly composed of reflected sunlight.  In contrast, the 

IR spectrum from 5.0 to 13.0 µm is termed thermal infrared because measurements in 

this spectral region are generally recording energy radiated from scene elements. 

 

 

 

Figure 3. Wavelength regions of the electromagnetic spectrum. [From 23] 

 

Based on these wavelength regions, remote sensing can be classified into three 

main categories: visible and reflective infrared remote sensing, thermal remote sensing, 

and microwave remote sensing.  In visible and reflective remote sensing, the radiation 

that is measured has a solar origin, radiated with a peak wavelength of 0.5 µm.  In 

thermal remote sensing, the measured radiation comes from the observed objects.  

Materials with normal temperatures (~300K) emit radiation with a peak wavelength of 

10.0 µm.  Finally, in microwave remote sensing, observations are generally due to 
7 



reflection of energy radiated by the observing platform (i.e. radar).  In this thesis, 

hyperspectral images from the visible and reflective infrared spectrum are used.  The 

majority of currently available sensors with material identification (ID) capability utilize 

this portion of spectrum. 

Typically the source of energy in hyperspectral imagery is the sun.  The incident 

energy from the sun that is not absorbed or scattered in the atmosphere interacts with the 

earth's surface, where it is absorbed, transmitted, or reflected.  Additionally, the 

electromagnetic radiation has specific properties that are predictable in its interaction 

with materials and transmission through the atmosphere.  Therefore, by measuring the 

electromagnetic radiation in narrow wavelength bands, the resulting spectral signatures 

can be used, in principle, to uniquely characterize and identify any given material [9]. 

All materials have unique spectral characteristics because they absorb, reflect, and 

emit radiation in a unique way.  For example, in the visible portion of the spectrum, a leaf 

appears green because it absorbs in the blue and red regions of the spectrum and reflects 

in the green region.  These variations in absorption, reflection, and emission are due to 

the material composition.  Differences in spectral response due to absorption, 

transmission, and reflection cause materials to have a unique spectral signature.  Figure 4 

illustrates the spectral signatures of three pixels, respectively dominated by seawater, 

vegetation, and concrete.  Comparing the spectra between seawater and vegetation, it is 

observed that they reflect similarly in the visible wavelengths but differently in the 

infrared portion.  Also, concrete has a different spectral signature compared to the other 

two in specific wavelength regions.  Therefore, by knowing a material's spectral 

signature, it is possible for this material to be detected in pixels within an image.  

Libraries with the characteristic spectra of various materials of interest exist, and these 

spectral signatures can be compared with measured spectra in order to identify the 

features in an image.  In the early work on spectral imagery, computational limits 

prevented full exploitation of such data.  Computational power in the latter portion of the 

1990’s made routine use of spectral imagery much more practical. 
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Figure 4. Hyperspectral pixel spectra. 

 

3. Remote Sensing Systems and Applications 

Hyperspectral sensors oversample the spectrum signal in contiguous bands to 

ensure that features are well represented.  This oversampling, and the wide frequency 

range of the energy reflected from the ground, result in hyperspectral data with a high 

degree of spectral redundancy [1].  Additionally, the interpretation of data is not an easy 

task because of computational complexity.  Typically, a hyperspectral image occupies 

more than 100 MB, which makes the processing of the data a slow procedure even with a 

modern computer.  Also, data are distorted by additional effects from the atmosphere and 

other types of noise, which are explained in following sections.  Identification of 

materials becomes more complex because a pixel, which is the lowest possible measured 

area, typically contains more than one material, which means it is a “mixed” pixel.  The 

spectral signature of a mixed pixel is formed by the combination of the existing materials 

within the pixel. 
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Based on the above considerations, analysis of spectral imagery consists of 

several steps of processing the data for effective interpretation.  Figure 5 provides a 

simplified block diagram of the processing chain involved in the analysis of hyperspectral 

images. 

The first step in processing hyperspectral image data is atmospheric 

compensation, a procedure that accounts for the atmospheric effects.  Data are converted 

from at-sensor radiance to reflectance, to facilitate comparison to known spectral 

signatures, typically found in libraries or known from ground truth exercises conducted in 

parallel with flight experiments.  Conversion from radiance to reflectance can be done in 

a variety of ways, all giving slightly different results.  One popular method of doing the 

conversion is to divide the radiance observations by the scene's average spectrum.  For 

the purposes of this study, it is important to note that atmospheric compensation is 

connected to the noise level for the spectral data. 

After correcting atmospheric effects, dimensionality reduction and image 

enhancement are performed to reduce the level of redundancy and noise.  These 

operations include functions that assist in the analysis and information extraction of the 

images.  Image enhancement mainly improves the appearance of the imagery for better 

visual interpretation, while transformations produce new images from the original bands 

in order to highlight certain features.  The hyperspectral data are transformed to a new 

space with fewer spectral bands, with the expectation that detection performance and 

resolution between different features can be improved. 

Finally, data are ready for information extraction based on end-user needs.  

Currently, hyperspectral remote sensing is used in a variety of applications.  In these 

applications, the final processes that take place are unmixing and detection.  Unmixing is 

the procedure by which the measured spectrum of a mixed pixel is decomposed into a 

collection of constituent spectra, or end members [22].  Detection is accomplished by 

comparing the hyperspectral signatures from library data to the measured data.  The first 

process,  unmixing,  is  done  mainly  using  classification  procedures.  Classification is a  
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process that organizes pixels into groups with, more or less, spectral similarity, based on 

the principle that different features have unique reflectance signatures across the 

electromagnetic spectrum [15]. 

The processes of unmixing and detection help users in three main applications: 

target detection, material identification, and material mapping.  In target detection, the 

purpose is the detection of materials with a known spectral signature or the detection of 

anomalous elements, not related to the background scene.  More broadly, in material 

identification projects the materials in the scene are not known.  The analysis aims to 

identify the unknown materials within the scene.  Similarly, in material mapping the 

location of materials within the scene are not known.  Geologists use material mapping 

techniques to map out where various minerals exist in a scene. 

 

 
 

Figure 5. Representative algorithm chain for hyperspectral image exploitation. 

 

B. IMAGING PROCESSING SYSTEMS 

Remote sensing systems are divided into two main categories: passive and active.  

Passive systems have sensors that detect energy naturally available, while active sensors 

provide their own energy source for illumination.  The sun is the main source for passive 

sensors working in the visible and short-wave infrared (SWIR).  Sensors working in the 

mid-wave  infrared  (MWIR) and long wave infrared (LWIR) react to the energy radiated  
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by scene elements.  By contrast, active sensors emit radiation to the target and measure 

the reflected radiation.  In this thesis only hyperspectral images collected from passive 

sensors are used. 

The sensors used in remote sensing have three main characteristics: spatial, 

spectral, and radiometric resolution.  Spatial resolution refers to the smallest possible 

feature that can be detected and mainly depends on the sensor's Instantaneous Field of 

View (IFOV).  The IFOV is defined as the angular cone of visibility of a sensor, and it 

determines the area on the Earth's surface, as seen from a given altitude, at a particular 

moment in time [12].  For example, assuming a flight altitude of 1,000 m and an IFOV of 

2.5 milliradians, the detected area on the ground will be 2.5 meters by 2.5 meters, which 

is the sensor's maximum spatial resolution or the resolution cell.  In target detection and 

classification, a feature should have a size larger than the resolution cell - or its radiance 

should dominate the cell - in order to be detected.  (Sub-pixel techniques allow detection 

of objects smaller than the resolution cell, but the confidence level drops.)  Depending on 

the application, either the detail associated with one pixel, or the information from the 

total area imaged by the sensor may be needed.  Generally, in military applications high 

resolution is desirable, while in many commercial applications the coverage of large 

areas is more important. 

Spectral resolution refers to the ability to distinguish closely spaced wavelengths.  

Multi-spectral sensors measure brightness over a few separable wavelength ranges, 

typically using 4 to 30 bands.  Hyperspectral sensors have hundreds of narrow contiguous 

spectral bands throughout the visible, near infrared, and short wave infrared portions of 

electromagnetic spectrum.  The high spectral resolution allows for better discrimination 

among different features in the image. 

Radiometric resolution refers to the ability of a sensor to discriminate differences 

in measured brightness.  High radiometric resolution means that the sensor can 

distinguish very slight differences in radiation.  This resolution is determined by the 

number  of  available  brightness levels.  This number is defined by the number of coding  
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bits used for representation of the image.  For example, a sensor that uses 8 bits has 28 = 

256 discrete brightness levels.  Radiometric resolution affects the amount of detail 

contained in a scene. 

In this thesis three types of images are used for processing and analysis: Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS), Hyperspectral Digital Imagery 

Collection Experiment (HYDICE) and Hyperion data.  Color composites of the AVIRIS, 

HYDICE, and Hyperion images used in experiments for this thesis are shown in Figures 

6, 7 and 8, respectively. 

AVIRIS [13] is a unique optical imaging sensor that delivers calibrated images of 

the upwelling spectral radiance in 224 contiguous spectral channels with wavelengths 

from 0.4 to 2.5 µm.  It has been the state of the art spectral imaging system since 1987.  

The main objective of the AVIRIS project is to identify, measure, and monitor 

constituents of the Earth's surface and atmosphere based on molecular absorption and 

particle scattering signatures.  AVIRIS has been flown on two aircraft, the NASA ER-2 

and the Twin Otter.  The NASA ER-2, a modified U2 aircraft, flies at approximately 20 

km above sea level at about 730 km/hour and has a ground swath and ground sampling 

distance of approximately 11 km and 17 m, respectively.  Higher spatial resolution 

AVIRIS data have become available in recent years as the system has been reconfigured 

to allow flight on low-altitude aircraft, particularly the Twin Otter, flying at 4 km above 

ground level at 130 km/hour. 
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Figure 6. An AVIRIS image of 224 bands (red 647.05 nm, green 549.23 nm, blue 

451.22 nm). 

 

HYDICE was designed and developed by Hughes-Danbury Optical Systems Inc., 

in order to provide high quality hyperspectral data to explore techniques for a wide 

variety of applications [16].  It was designed with the intention of collecting somewhat 

higher spatial-resolution imagery than AVIRIS and uses a 2-D focal plane for push-

broom imaging, in contrast to the AVIRIS linear array which operates in whisk-broom 

mode.  The pushbroom scanner, also referred to as an along-track scanner, has an optical 

lens through which a line image is formed perpendicular to the flight direction.  The 

whiskbroom scanner, also referred to as across-track, uses rotating mirrors to scan the 

landscape below from side to side perpendicular to the direction of the sensor platform.  

The HYDICE sensor operates in the spectrum from 0.4 to 2.5 µm, which is sampled into 

210 contiguous bands, with a spectral width of ~10 nm for each band. 
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Figure 7. A HYDICE image of 210 bands (red 745.364 nm, green 647.131 nm, blue 

450.257 nm). 

 

Finally, the Hyperion sensor, flown aboard NASA's Earth Observation-1 satellite, 

provides a high resolution hyperspectral imager capable of resolving 196 spectral bands 

in wavelength ranges of 10 nm (from 0.430 to 2.400 µm).  Its image swath width is 7.6 

km, with a 30 meter resolution at 705 km altitude [17]. 
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Figure 8. A Hyperion image of 242 bands (red 752.97 nm, green 651.28 nm, blue 

447.89 nm). 

 

 

C. IMAGE DISTORTIONS IN HYPERSPECTRAL REMOTE SENSING 
DATA 

Hyperspectral image data are collected by sensors on aircraft or satellites mainly 

in digital format.  Interpretation and analysis of these data requires digital processing as 

explained in the simplified block diagram of hyperspectral remote sensing imagery 

(Figure 5).  These image data contain errors that can be classified into three categories: 

atmospheric, instrumental, and geometric distortions.  This section describes the 

characteristics of image distortions that must be taken into account in processing 

hyperspectral image data. 
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1. Atmospheric Distortions 

The atmosphere affects hyperspectral remote sensing data because of scattering 

and absorption, which attenuates the transmission of solar radiation.  In the absence of an 

atmosphere, the solar radiance that can be measured by a sensor is provided by the 

formula: 

 

L = E∆λ * cosθ * ∆λ * R / π  (2.1) 

 

where L is the radiance available for measurement, E∆λ is the average spectral irradiance 

in the band ∆λ, R is surface reflectance and π accounts for the upper hemisphere of solid 

angle [2]. 

Using knowledge of the instrument response function, the radiance (L) can be 

obtained from the digital value representing the brightness of each pixel.  Note that this 

formula is correct in the absence of an atmosphere, and does not take into consideration 

atmospheric effects.  Solar radiation is affected by absorption and scattering caused by 

atmospheric molecules and aerosols.  These particles are distinguished by their size 

relative to the wavelengths of visible light.  Atmospheric molecules are smaller, while 

aerosols are larger than these wavelengths. 

Absorption of solar energy by air molecules is a selective process which converts 

incoming energy into heat, a process that occurs at discrete wavelengths.  For our 

purposes, water, ozone, oxygen, and carbon dioxide are the primary molecules that cause 

significant attenuation in electromagnetic radiation at the frequencies of interest.  Figure 

9 shows the spectral transmittance with respect to various atmospheric molecules, and 

shows the “atmospheric windows”.  Remote sensing systems are designed to operate in 

these regions called atmospheric windows, in order to minimize such attenuation.  

Nevertheless, compensation for radiometric distortion is still required. 

Two different forms of scattering are typically defined: Rayleigh scattering which 

is caused by molecules, and Mie scattering which is caused by aerosols such us dust and 

industrial smokes.  The effect of Rayleigh scattering decreases rapidly with wavelength 
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as the probability of scattering is inversely proportional to the fourth power of 

wavelength (~ λ-4).  By contrast, Mie scattering decreases less rapidly with wavelength.  

In addition, Mie scattering varies significantly depending on location, time, and 

environmental conditions. 

 

 
Figure 9. Characteristics of absorption by atmospheric molecules.  [From 24] 

 

The analysis of spectral imagery generally depends on an accurate compensation 

for the effects of the atmosphere, particularly absorption.  In particular, narrow 

absorption bands have a significant influence on the measured radiance in specific bands 

(e.g. the water feature at 1130 nm).  Aerosol scattering can be difficult to deal with, at 

least in part, because of its strong dependence on location and environmental conditions, 

such us humidity and temperature.  Scattering is dominant at shorter wavelengths and 

instead of energy conversion, a change of path direction occurs, which depends on the 

aerosol size and the direction of incident light. 

The atmospheric attenuation in the path from the ground to the sensor is 

dependant on the flight altitude of the platform and the sensor's field-of-view (FOV).  

Typically, a large FOV and a low-flying altitude cause the path length of the up-welling 

to change radically as a function of the pixel across the track [14]. 

The correction of atmospheric effects is called atmospheric calibration.  The 

modeling approach for atmospheric calibration of hyperspectral images often makes use 

of the image data themselves [18].  There are several calibration models for hyperspectral 

images.  Atmosphere Removal (ATREM) [19] is one of the most commonly used 
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models.  It takes into account the altitude of the acquisition aircraft and differences in 

attenuation due to water vapor as a function of path length, but it does not take into 

account the pixel-based variation in attenuation due to the scattering component [14]. 

2. Instrumental Distortions 

The main sources of instrumental errors are due to sensor calibration and scanner 

construction and must be taken into account by calibration.  Sensor calibration is required 

because of radiometric errors that result in incorrect brightness values for the pixels in an 

image.  The false measurements can be either in a spectral band or within the spectrum of 

a given pixel.  The radiometric calibration of a sensor includes both the precision of the 

radiance measurement in appropriate units, typically power per area/solid 

angle/wavelength (µW/cm2/sr/nm), as well as its conversion to a digital number. 

Instrumental errors are mainly in the form of banding or striping.  Banding is 

typically a visible noise pattern caused by memory effects.  For example, after scanning 

past a bright target, such as snow, the detector's response is reduced due to memory 

effects.  In the case of a uniform region extending beyond the bright target, recorded 

brightness values from the sensor will be slightly lower than corresponding values 

obtained on the following scan.  Therefore, the scans in one direction will be darker than 

adjacent scans in the opposite direction (for a whisk-broom scanner).  Striping is a line-

to-line artifact phenomenon that appears in individual bands of radiometrically corrected 

data.  Its source can be traced to individual detectors that are miscalibrated with respect to 

one another.  In other words, striping is caused by problems in scan lines as scanning 

systems build up an image one line at a time. 

The scanner's construction used in acquiring image data affects the type of noise 

that will be induced in the image.  For example, variation in calibration between detector 

elements causes stripping along flight lines in a linear array scanner [20].  Additionally, 

improper spectral alignment between the entrance slit and the detector array induces 

noise in images collected by a linear scanner [21]. 

The accuracy of determining the surface reflectance depends on the sensor and its 

calibration.  The spectral calibration is a function of the precision of the wavelength 

calibration and the spectral resolution of a given band.  A precision to the nearest 0.1 nm 
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is necessary for an instrument with a 10 nm spectral resolution in order for the various 

absorption bands, such as that of water vapor, to be taken into account [21].  Focal plane 

sensors like that on HYDICE can have spectral “smile effects” – errors in wavelength 

which vary over the focal plane. 

It is noteworthy that band to band instrumental errors are normally ignored in 

comparison to band to band errors from atmospheric effects.  However, instrumental 

errors within a band can be quite severe and often require correction [2]. 

3. Geometric Distortions 

Geometric distortions are quite significant when a remote sensing platform flies at 

low altitude and has a large FOV.  In this case, pixels in the nadir line are smaller than 

pixels at the edges of the swath due to the panoramic effect [2].  The size of the pixel in a 

scan direction at scan angle θ is given by 

 

pθ = βh sec2θ = p sec2θ  (2.2) 

 

where β is the instantaneous field of view (IFOV), h is the altitude, and p is the pixel 

direction at nadir.  Assuming an aircraft flying at 1,500 m, with largest view angle 40°, 

and having a pixel size of 3 m at nadir, the size of the pixel at the edge of the swath will 

increase to approximately 3.4 m due to the panoramic effect.  Additionally, geometric 

distortion occurs due to pixel displacement (dx) given by the formula  

 

dx = dz tanθ / pθ  (2.3) 

where dz is the relative height over a reference elevation.  Assuming a relative height of 

20 m the pixel displacement will be 2.14 m. 

Geometric errors are also found in scanner data and are induced by attitude and 

altitude variations of the aircraft, caused mainly by atmospheric turbulence and cross-

winds.  Figure 10 illustrates the changes of pixel geometry in an aircraft's attitude 

variations.  For example, an increase in altitude will change the pixel's geometry as 
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illustrated in Figure 10.a.  Also, a variation in the aircraft's velocity changes the pixel size 

along track (Figure 10.b).  Finally, attitude variations in pitch, roll, and yaw cause along-

track displacement, across-track displacement, and image rotation respectively. 

Two techniques are used in reducing geometric distortions of aircraft scanner 

data.  The first requires a good knowledge of the sources that induce errors in order to 

establish a correction formula.  The second method does not require knowledge of the 

sources of distortion, but establishes a distortion model which transforms the image data 

to geographical space via a map. 

4. Noise Modeling 

Noise induced in an image can degrade the quality of the image to such a degree 

that important information is obscured.  Therefore, noise removal should be the first step 

before information extraction from hyperspectral images.  Noise removal can be achieved 

using image processing techniques.  There are several different sources that induce noise 

in an image.  However, from a mathematical point of view, noise in remote sensing 

hyperspectral images can be categorized into random and periodic noise. 

Degradation in image quality is commonly caused by uncorrelated noise, the type 

of noise that image processing methods try to eliminate.  In terms of a spatially-sampled 

image, uncorrelated noise is defined as the random grey level variations within 
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Figure 10. Effects of platform position and attitude errors on the region of earth being 

imaged, when these errors occur slowly compared with image acquisition [From 2]. 

 

an image that has no spatial dependence from pixel to pixel.  This means the brightness 

of a pixel due to uncorrelated noise does not depend on the brightness of its neighboring 

pixels.  From a mathematical point of view, the noise is characterized by its probability 

density function or histogram in the case of discrete noise. 

The most common type of noise that appears in hyperspectral images -- and the 

one that we are most interested in -- is Gaussian noise.  In most cases, the noise in an 

image can be modeled as the sum of many independent noise sources.  This type of noise 

is represented as a normally distributed (Gaussian) zero-mean, random process with a 

probability destiny function f(x) given by 
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where σ is the standard deviation of the noise and m is the mean.  A histogram of 

Gaussian noise is shown in Figure 11.  Data are distributed equally around their mean 

value.  About 68% of the area under the curve is within one standard deviation of the 

mean, 95.5% within two standard deviations, and 99.7% within three standard deviations. 

Assuming an image I, the effect of an additive noise process is the summation of 

the signal with the noise and is given for the ith and jth pixel as follows 

 

I ( i, j ) = S (i,j) + nad(i,j)  (2.5) 

 

 
Figure 11. Histogram of a Gaussian noise function. 

 

Another type of noise that commonly appears in hyperspectral images is periodic 

noise.  This type of noise is caused by incorrect scan lines due to improper operation of 

systems and has the form of striping.  Striping is measured by its offset and gain.  Offset 
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is the addition or subtraction of a constant value to the recorded brightness values in an 

image, while gain is the multiplication of the data values by a factor.  Striping is 

produced in image data by using a gain or offset factor for a given pixel that is incorrect, 

affecting one or more scan lines in the image.  In periodic noise, the original data can be 

difficult to recover.  Most signal processing methods try to detect the incorrect pixels and 

to replace them by a value based on neighboring pixels. 

In this thesis we explore the ability of Principal Components Analysis (PCA) 

based techniques to eliminate Gaussian noise, as it is the noise that dominates in 

hyperspectral images.  PCA is a versatile technique and is widely used for dimensionality 

reduction, data compression, and feature extraction.  The applicability of PCA methods is 

investigated using AVIRIS, HYDICE and Hyperion image data. 

 

 
 
 
 
 
 
 
 
 

24 



III. PRINCIPAL COMPONENTS ANALYSIS 

A. OVERVIEW 

Multispectral and hyperspectral remote sensing image data consist of vector 

components arranged to form an image.  These vector components or spectral bands do 

not contain completely independent information, but are usually correlated to some extent 

due to the spectral overlap of the sensors and the correlation in reflectance of materials at 

disparate wavelengths [1].  That means that variations in the brightness in one band may 

be mirrored by similar variations in another band (for example, when the brightness of a 

pixel in band 1 is high, it is also high in band 3).  From a signal processing view, this 

correlation results in two undesirable effects.  First, there is unnecessary redundancy 

which increases the data-processing cost without providing more information.  Second, 

the data set includes both information and noise, and the noise content is relatively higher 

in these high-dimension data sets.  Therefore, methods that capture the content in the 

original data, according to some criteria, are necessary.  In remote sensing applications, 

the main criterion is to improve the image quality by reducing the dimensionality of the 

data and removing the noise. 

Principal Components Analysis (PCA) is the most widely used linear-dimension 

method based on second order statistics.  PCA is also known as the Karhunen-Loeve 

transform, singular value decomposition (SVD), empirical orthogonal function (EOF), 

and Hotteling transform.  PCA is a mathematical procedure that facilitates the 

simplification of large data sets by transforming a number of correlated variables into a 

smaller number of uncorrelated variables called principal components.  The basic 

applications of PCA, as applied to remote sensing, are data compression, from the 

reduction in the dimensionality of the data, and information extraction, by segregation of 

noise components.  This is done by finding a new set of orthogonal axes that have their 

origin at the data mean and are rotated to a new coordinate system so that the spectral 

variability is maximized.  Resulting PC bands are linear combinations of the original 

spectral bands and are uncorrelated. 
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In this chapter, two methods, that are included in the PCA family of techniques, 

are examined for image enhancement as applied to the field of target detection: the basic 

PCA and Maximum Noise Fraction (MNF) or Noise Adjusted Principal Components 

(NAPC) [11].  First the basic mathematics are explained and then the methods are 

implemented and results are discussed. 

1. Basic Principal Components Analysis 

This section discusses the mathematical background of the basic PCA.  The basic 

PC operation is explained, for reasons of simplicity, using a two dimensional data set, 

since the plots are better understood and the mathematics are easier.  In multispectral and 

hyperspectral remote sensing image data there are four to several hundred dimensions, 

but the basic principles are the same as in the two dimensional example, except that the 

computations become more complicated. 

An image in remote sensing applications can be represented by a matrix with 

components that represent the measured intensity values of the pixels.  Assuming that an 

image has n pixels, measured at k spectral bands, the matrix characterizing the image is 

as follows: 

 :  
1
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kx

x
x     (3.1) 

where x1, … ,xk are vectors of n elements. 

For the purpose of this explanation of PC, it is assumed that the matrix consists of 

10 pixels measured at two bands.  Therefore, two vectors, each having 10 components, 

represent the intensity values (reflectance) of each pixel in each band.  In this example, 

the sample data set is the following 2×10 matrix: 
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Additionally, the position of each pixel is plotted in a two-dimensional spectral 

space in which each axis represents reflectance in the band indicated (Figure 12).  This 

scatter plot illustrates the degree of correlation between the two variables and indicates a 

high correlation between the image pixels in the two bands.  From a signal processing 

view, the majority of the information about two highly correlated variables can be 

captured by a regression line, which represents the best fit of the linear relationship 

between the variables.  One way of viewing the PCA is that the goal is to linearly 

transform the data so that it approximates that regression line. 

Several steps are involved in this procedure.  The first step in the PC procedure is 

generally the subtraction of the mean from each of the data dimensions.  The mean 

spectrum vector represents the average brightness value of the image in each band and it 

is defined by the expected value as follows: 
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where m is the mean spectrum vector, N is the total number of image pixels, and xj is a 

vector representing the brightness of the jth pixel of the image.  Therefore, the 

components of the mean spectrum vector m represent the average brightness of the image 

in each band.  The mean spectrum vector of the sample data is shown in Figure 12(a). 

By subtracting the mean of the data, the mean spectrum is zero in each band.  This 

is called a mean shift.  The PC analysis decorrelates the data mainly by rotating the 

original axes, and therefore, the mean shift does not change the attributes of the resulting 

PC images.  The only difference is an addition of a constant value in each band.  This 

makes the decorrelation more evident in subsequent stages, but is not necessary.  The 

mean-correction  results  in  data  centered  about  the axes origin, and therefore, negative  
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values appear in the pixel coordinates.  This can be disorienting in remote sensing 

applications, and some software packages add back a positive offset after the 

decorrelation step [3]. 

The second step in the PC method is to calculate the covariance matrix, which is a 

square symmetric matrix, where the diagonal elements are variances and the off-diagonal 

elements are covariances.  From a spectral imagery point of view, the variances represent 

the brightness of each band and the covariances represent the degree of brightness 

variation between bands in the image.  Additionally, covariances that are large compared 

to the corresponding variances in a spectral pair indicate high correlation between these 

bands while covariances close to zero indicate little correlation in these spectral pairs [2]. 

The covariance matrix is computed by the following formula 

{ }T
 m)-m)(x-(xE=∑ x     (3.3) 

where m is the mean spectrum vector of the image and x is the vector representing the 

brightness values of each pixel.  For the sample data set given above, the 2×2 covariance 

matrix is given by 

∑ 







=

x 0.4484     4133.0
0.4133     4628.0

 

Note that the correlation matrix is frequently used in lieu of the covariance matrix.  This 

changes the relative weighting of the channels (bands) in the decorrelation transform, but 

is conceptually the same.  The correlation matrix is as follows 

∑ 







=

x 1.0000     9073.0
0.9073     0000.1

 

The next step in the PCA analysis is the calculation of the eigenvectors and 

eigenvalues of the covariance matrix.  The eigenvalues λ = {λ1 ... λk} of a k×k square 

matrix are its scalar roots, and are given by the solution of the characteristic equation 

| Σx – λ I | = 0     (3.4) 
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where I is the identity matrix.  The eigenvectors are closely related with the eigenvalues 

and each one is associated with one eigenvalue.  Their length is equal to one and they 

satisfy the equation 

Σx vk = λk vk     (3.5) 

where vk is the eigenvector corresponding to the λk eigenvalue and its dimension is 1×k.  

Applying these above mentioned formulas with the covariance matrix of the sample data 

results in 

λ = [0.0422    0.8690]            and,              







−

=
0.7010-    7132.0
0.7132-    7010.0   

  v

Figure 12(b) presents the normalized data (mean-corrected) in the two dimensional 

example, where both eigenvectors have been plotted on top of the data. 
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Figure 12. Data in a PC example (a) original data and their means (b) normalized 

data with the eigenvectors of the covariance matrix overlaid. 

 

The eigenvectors are orthogonal to each other and provide us with information 

about the patterns of the data.  The first eigenvector provides a line that approximates the 

regression line of the data – this axis is defined by maximizing the variance on this line.  

Therefore, the second eigenvector provides a line that is orthogonal to the first, and 

contains the variance that is away from the primary vector.  In the case of three variables, 

a space will be used instead of a plane as in the two-dimensional example.  Then, a 

"regression" plane can be defined for the data that maximizes the variance.  When more 

29 



than 3 variables are involved, the principles of maximizing the variance are the same but 

graphical representation is almost impossible. 

The fourth step in the PC analysis is the determination of the components that can 

be ignored.  An important property of the eigenvalue decomposition is that the total 

variance is equal to the sum of the eigenvalues of the covariance matrix, as each 

eigenvalue is the variance corresponding to the associated eigenvector.  The PC process 

orders the new data space such that the bands are ordered by variance, from highest to 

lowest.  The eigenvector with the highest eigenvalue is the first principal component (PC) 

and accounts for most of the variation in an image.  The second PC has the second larger 

variance being orthogonal to the first PC, and so on. 

A transformed data set is created by using the eigenvectors from the 

diagonalization of the covariance (or correlation) matrix.  After selecting the eigenvectors 

that should be retained, the following formula is applied: 

 

(Final Data Set) = (Eigenvectors Adjusted)’ × (Data Adjusted)’  (3.6) 

 

where (Eigenvectors Adjusted)’ is the matrix of eigenvectors transposed so that the 

eigenvectors are in the rows with the first eigenvector on the top and (Data Adjusted)’ is 

the matrix with the mean-corrected data transposed. 

In the provided example, in which a two dimensional data set was used, the 

choices are simply two: to keep both eigenvectors or to ignore the less significant 

eigenvector, the one with the smaller variance.  By keeping both eigenvectors, there is no 

loss of information, and the final data set is depicted in Figure 13(a), showing the original 

data set rotated.  The alternative is illustrated in Figure 13 (b), where only the most 

significant eigenvector, the one with the largest eigenvalue is kept.  This results in a 

single dimension vector with components along the new x-axis.  In this case, dimensional 

reduction using PCA has occurred by removing the contribution of the less significant 

eigenvector.  This rather trivial example illustrates the case where multi-dimensional 
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imagery has been reduced to a single band – some sort of average brightness image, not 

unlike that which would have been obtained by a panchromatic sensor. 
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Figure 13. (a) Derived data set using both components (b) Derived data set using only 

one component. 

 

Dimension reduction in multivariate data it is not an easy task and many methods 

have been proposed.  The main goal of these methods is to find the intrinsic 

dimensionality of the data set – that is the minimum number of free variables needed to 

model the data without loss [4].  Typically, four methods for reducing the dimensionality 

of multispectral and hyperspectral image data are implemented in remote sensing 

applications. 

The first and most common approach is the scree test introduced by Cattell in 

1966 [5].  It is a graphical method in which the eigenvalues are plotted in a single line 

plot versus the PC number.  This plot shows which of the initial principal components 

accounts for most of the variance in the scene.  The eigenvalue plot typically shows a 

sharp drop from a high initial value, then a bend in the curve, extending then into a fairly 

level tail.  It is assumed that the variance elements represented in the tail of the curve 

represent only the random variability in the data, meaning the noise components and 

mainly instrumentation noise.  Therefore, according to the scree test, the components to 

the left of the break, or knee in the curve, should be retained.  A typical eigenvalue plot is 

shown in Figure 14. 
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Figure 14. Eigenvalue plots of the AVIRIS image. 

 

Another method for determining the intrinsic dimension of the data is the Kaiser 

criterion [6].  In this case, the correlation matrix is used, transform bands are evaluated, 

and those with a variance greater than or equal to one are retained.  Transform bands with 

a variance greater than or equal to one contain at least as much information as the 

original. 

The third approach to dimension reduction was proposed by Yury [7].  

Continuous Significant Dimensionality (CSD) is defined by the formula, 

∑
=

=
k

j
jCSD

1
)1,min(λ   (3.7) 

where λ1, λ2, ... λk are the eigenvalues of the correlation matrix.  The CSD value indicates 

the number of PC components that should be retained. 

Cumulative variability is the fourth common method for dimensionality reduction.  

The criterion here is that the first components that account for at least 90% of the total 

variability are retained.  It is estimated that these components capture the useful 

information of the scene. 

The above methods work when there are clearly only relatively few PC bands, as 

with the synthetic data.  However, real hyperspectral data can give quite different results 

due to the ill-conditioning of the dimension estimation problem [4].  In section (B.1) all 
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the above mentioned methods for dimension reduction are investigated for their 

effectiveness on hyperspectral image data. 

2. Minimum Noise Fraction Transform 

The minimum (or maximum) noise fraction (MNF) is a second major algorithm 

belonging to the family of PCA techniques.  It was developed by Green, Berman, 

Switzer, and Graig in 1988 as a method that takes into account sensor noise.  By contrast, 

the basic PCA procedure takes into consideration only the variances of each PC 

component and assumes that noise is already effectively isotropic.  However, real sensor 

noise is typically not isotropic, or “white”.  In addition, the variances of noise 

components can be higher than the variances of components that represent the local 

information of the scene.  Therefore, PCs do not always produce images of decreasing 

image quality, even though the variance is declining monotonically with PC number.  It is 

not unusual to find, that in noisy images, local information can be represented in higher 

PC components.  A measure of image quality is the signal-to–noise ratio (SNR).  The 

MNF transform orders the images in terms of this metric, thus ordering them based on 

image quality. 

The MNF transform is effectively an algorithm consisting of two consecutive 

Principal Component's transformations.  The application of this transformation requires 

knowledge of an estimate of the signal and noise covariance matrices.  The first 

transform is derived from the covariance matrix for the sensor noise, and is designed to 

decorrelate and whiten the data with respect to the noise.  The main difficulty with this 

process is obtaining a proper estimate of the sensor noise.  Several methods have been 

suggested: (1) simple differencing, in which the noise is estimated by differencing the 

image between adjacent pixels  (2) casual simultaneous autoregressive (SAR), in which 

the noise is estimated by the residual in a SAR model based on the W, NW, E and NE 

pixels (3) differencing with the local mean (4) differencing with the local median, an 

alternative to the local mean method in order to avoid blur edges and (5) quadratic 

surface, in which the noise is estimated as a residual from a fitted quadratic surface in a 

neighborhood. 
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As noted, the MNF transform contains two PC transforms.  The first 

transformation, based on an estimated noise covariance matrix, results in transformed 

data for which the noise is uncorrelated with unit variance.  The second transformation is 

a basic PCA on the noise-whitened data.  Then, both the eigenvalues and the 

corresponding images, which are called eigenimages, are examined in order for useful 

information to be separated from noise.  Generally, eigenimages associated with large 

eigenvalues consist of useful information while eigenvalues close to one indicate noise-

dominated data.  By discarding the components with small eigenvalues, the noise is 

separated from the data and the inherent dimensionality of the image is determined. 

Additionally, this method is used for spatial smoothing in which a spatial filter is 

applied to the noise images, and the filtered data are transformed back to the original data 

space using an inverse MNF transform. 

The main characteristic of the MNF transform is that it orders the component 

images based on image quality by measuring the SNR.  Therefore, it is invariant to scale 

changes, in any band, because it depends on the SNR instead of variance, like basic PCA, 

to order the component images [8].  This transformation is also called the Noise Adjusted 

Principal Components transform because it is equivalent to sequentially transforming the 

data to a coordinate system in which the noise covariance matrix is the identity matrix 

followed by a PC transformation. 

B. APPLICATION OF PCA TECHNIQUES 

The basic algebra behind PCA techniques has been explained in the previous 

sections using a two-dimensional data set focusing on the statistical interpretation in the 

context of remote sensing applications.  In this section, two PCA techniques, the basic 

PCA and MNF transformation, are implemented on three different image data sets.  The 

objective is to examine the theory to investigate the efficiency of these techniques for 

various remote sensing tasks. 

Data from AVIRIS, HYDICE and Hyperion are used to explore the PCA 

techniques of interest.  The tool used for this work is the product ENVI (Environment for 

Visualizing Images) software, version 3.5, produced by Research Systems Inc.  The 

characteristics of these data were presented in Chapter II.  As a reminder, each covers the 
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0.4-2.5 µm spectral range.  The AVIRIS, HYDICE and Hyperion sensors have 224, 210 

and 242 bands, respectively.  The Hyperion sensor, mounted on the EO-1 satellite, 

provides imagery measured from an altitude of 705 km.  The other two provide airborne 

imagery. 

In subsequent sections, methods of determining the intrinsic dimensionality of 

spectral data sets are explored, and the most appropriate approach is implemented.  PCA 

techniques are investigated using the statistics of correlation and covariance matrices.  

Also, the resulting images from the basic PCA and MNF transforms are presented and 

their contribution to information extraction is discussed. 

1. Determining the Intrinsic Dimension of Data 

In this section, the methods for determining the intrinsic dimension of data are 

investigated for their effectiveness in hyperspectral data sets.  The correlation matrix is 

first computed and then the eigenvalues are derived.  The summation of the eigenvalues 

is equal to the total number of bands (e.g. if the number of bands is 224 the summation of 

all eigenvalues is 224) because the elements of the main diagonal in the correlation 

matrix are all equal to one.  Figure 15 shows the 25 first eigenvalues of the correlation 

matrix for each image in a scree graph and Table 1 lists the percentage of cumulative 

variability of the 20 first eigenvalues. 

Based on the scree test criterion for the AVIRIS image, 4 PCs are retained, since 

the curve flattens after these 4 components.  Using the same methodology, 3 components 

of the HYDICE and 2 of the Hyperion images are retained.  The cumulative variance 

criterion, in which a total variance of at least 90% is required (shown in Table 2) yields 3, 

2, and 14 retained components for AVIRIS, HYDICE, and Hyperion images, 

respectively.  By comparison, the Kaiser criterion gives higher values, with 5, 5, and 16 

bands retained.  Finally, the CSD values are calculated and are 13.16, 7.39, and 33.7 for 

the AVIRIS, HYDICE, and Hyperion images, respectively, and correspond to 14, 8, and 

34 retained PCs.  Table 3 summarizes the results for the three methods. 
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Figure 15. Scree graph of the first 25 eigenvalues of the correlation matrix for the 

AVIRIS, HYDICE, and Hyperion images. 
 

Table 3 shows that the cumulative variance criterion, the scree test, and the Kaiser 

criterion give approximately the same result (retain 3-5 components) for the AVIRIS and 

the HYDICE images.  In contrast, the Hyperion image, the Kaiser and cumulative 

variance criteria require retention of a similar number of components (14 and 16), while 

the scree test requires only 2 components.  The CSD technique indicates, in all three 

cases, that more components are required: 14, 8, and 34, respectively.  It is noted that 

Hyperion images are generally noisier than AVIRIS or HYDICE images and this is 

probably the reason for different results among the scree test and the Kaiser and 

cumulative variance criteria, for this image.  Therefore, the methods for determining the 

intrinsic dimensionality of the data seem to yield quite different results with hyperspectral 

images, especially when data are noisy.  The next part of the analysis is visual inspection 

of the PC images to allow for better estimation and determination of the components that 

include useful information. 
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AVIRIS image HYDICE image Hyperian image PC 

number Eigenval. % 
cumulative

Eigenval. % 
cumulative

Eigenval. % 
cumulative

1 151.48 67.63 170.19 81.05 140.90 69.07
2 47.85 88.99 23.41 92.20 20.50 79.13
3 9.60 93.28 10.25 97.08 4.16 81.17
4 5.22 95.61 2.31 98.18 2.77 82.53
5 1.67 96.36 1.42 98.86 2.32 83.67
6 0.78 96.71 0.45 99.08 2.05 84.67
7 0.63 96.99 0.39 99.27 1.80 85.56
8 0.55 97.24 0.14 99.33 1.72 86.40
9 0.52 97.47 0.13 99.40 1.58 87.18
10 0.46 97.68 0.13 99.46 1.36 87.85
11 0.43 97.88 0.11 99.51 1.32 89.13
12 0.38 98.05 0.10 99.56 1.28 89.73
13 0.36 98.21 0.09 99.61 1.22 90.31
14 0.35 98.37 0.08 99.65 1.17 90.82
15 0.34 98.52 0.08 99.69 1.03 91.31
16 0.31 98.66 0.07 99.72 1.01 91.80
17 0.30 98.80 0.06 99.76 0.99 92.28
18 0.29 98.93 0.06 99.79 0.98 92.75
19 0.27 99.05 0.05 99.82 0.96 93.22
20 0.26 99.17 0.03 99.83 0.95 93.67

 
Table 1. Eigenvalues and cumulative percentage of the correlation matrix for 

AVIRIS, HYDICE, and Hyperion images. 
 

Criterion AVIRIS image HYDICE image Hyperion image 

Cumulative variance 3 2 14 

Scree test 4 3 2 

Kaiser test 5 5 16 

CSD 14 8 34 

 
Table 2. Intrinsic dimension (retained PC’s) for AVIRIS, HYDICE, and Hyperion 

images for all methods. 

 

Figure 16 shows the PC images for the 3 sensors.  And by observing these 

images, it can be seen that the scree test gives a good indication, in all cases, of the 
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number of components that should be kept when both dimension reduction and 

information extraction must be achieved.  However, by keeping only three components in 

the AVIRIS data (although a large fraction of the information is retained) it is possible 

that local information may be lost, as the 14th PC is still without much noise. 

 
AVIRIS PC images 

 
PC3   PC4   PC5   PC14 
 

HYDICE PC images 

 
PC2   PC3   PC5   PC8 
 

Hyperion PC images 

                      
       PC14  PC2             PC16                  PC34 
  

Figure 16. Principal component images for AVIRIS, HYDICE, and Hyperion data 
using the correlation matrix corresponding to the PCs that should be retained based on 

different methods. 
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Several experiments were conducted using the MNF transform on these same 

images, and results were similar, regarding the determination of the intrinsic dimension 

of the data.  As in the PC transform, the scree test works well, but visual observation of 

the component images is necessary.  Therefore, for the rest of this thesis the scree test and 

visual inspection of the component images will be used for determining the intrinsic 

dimensionality of the data. 



2.  Basic Principal Components Analysis 

In remote sensing applications the spectral bands are highly correlated due to the 

wide frequency range of the energy reflected from the ground and the nature of reflective 

materials.  A scatter plot between two bands is a common method of representing 

correlated bands.  Figure 17 shows the scatter plot between a pair of bands for the 

original AVIRIS and HYDICE image data.  It is obvious that the positions of the pixels 

in both plots approximately resemble a line.  This indicates that these bands are highly 

correlated and, therefore, data are redundant.  Similar scatter plots, indicating redundant 

data, exist for most of the band pairs.  The purpose of the basic PCA is to produce a data 

space in which the bands are uncorrelated.  By retaining a few components the 

representation of the image data can be more efficient and effective. 

In sequence, the PC transform will be applied to each of the sensors.  The 

AVIRIS sensor, considered to have the lowest number of sensor artifacts and the best 

SNR, will be studied first. 

           
 

Figure 17. Scatter plots of original image data (a) AVIRIS band 1 versus band 2 and, 
(b) HYDICE band 1 versus band 2. 

 

A PC transform is applied to the AVIRIS data.  The covariance matrix is used for 

computation of the eigenvectors and eigenvalues.  Figure 18(a) shows the eigenvalue of 

each PC and 18(b) shows a detailed view of the first 25 eigenvalues.  Note that the y-axis 
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of the plots is logarithmic.  Also, Table 3 presents more information about the statistics 

related to the first 25 eigenvalues.  The first 24 PC images are depicted in Figure 20.  

 

 
Figure 18. Scree graph for AVIRIS data using the covariance matrix (a) 224 

eigenvalues and, (b) the first 25 eigenvalues (y-axis is logarithmic). 
 

The scree graph of the eigenvalues of the covariance matrix (Figure 18) indicates 

that 3 or 4 components contain most of the useful information as the slope of the curve 

has a smooth decrease after the 3rd eigenvalue.  Keeping that in mind, the PC images are 

examined for determination of the intrinsic dimensionality of the AVIRIS image data. 

The first PC band contains the largest percentage of data variance, and it is 

usually dominated by topography (illumination).  The image corresponding to the first 

PC resembles an aerial photograph and represents the scene average brightness.  The 

second PC band contains the second largest data variance, and each successive PC 

accounts for a progressively smaller proportion of variation in the original data.  By 

observing the second PC image, it is obvious that there is additional information content.  

In this water scene, this component reflects variations in water depth.  High values in the 

second PC indicate shallow areas and decreasing brightness values depict increasing 

water depth.  The populated area near the lake is also more recognizable and the hills are 

more clearly distinguishable.  The third PC image is similar to the second, but generally 

reveals more detail.  The vegetation on the land is distinguished better, while variations in 

water depth, hills, and the populated area are still well represented.  Therefore, each of 

the first PC components is mainly associated with one type of material. 
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Beyond the first 3 components, subsequent PC images do not appear to provide 

any additional useful information.  Therefore, based on both the scree test and visual 

inspection of the PC images, the third PC image completes the most efficient and 

informative representation of the data and it represents the intrinsic dimensionality of the 

image.  The cumulative variance of the 3rd PC image is 99.64% and this indicates that the 

rest of the PC bands contain the least correlated information - typically noise in the 

original data. 

Generally, the remaining PC images shown in Figure 19 do not provide any 

additional information about the scene.  However, a few points are noticeable.  In the 5th 

and 6th PC images areas well-defined in previous component images, are not 

distinguishable any more.  Band 7 is very noisy, and shows horizontal strips which 

appear to be instrument artifacts.  Higher order bands (8 and 9) again seem to provide 

information content.  Band 10 is also noisy and generally all bands above 10 appear 

noisy, because they exhibit very little variance due to noise in the original data. 

This scene (Figure 19) illustrates a frequent characteristic of the output from PC 

transforms – the PCA, in this case, does not provide images of monotonically decreasing 

quality.  It is possible that useful information is included in bands 8 and 9.  This is 

because basic PCA assumes no a priori knowledge of the scene, and it concerns itself 

only with variances of the decorrelated data.  Figure 20 depicts the decorrelation of the 

data produced by the PCA transform by showing the scatter plots for PC bands 1 versus 2 

and PC bands 2 versus 3.  The data are clearly uncorrelated. 

 

 
PC1   PC2   PC3   PC4 
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PC5   PC6   PC7   PC8 
 

 
PC9   PC10   PC11   PC12 
 

 
PC13   PC14   PC15   PC16 
 

 
PC17   PC18   PC19   PC20 
 

 
PC21   PC22   PC23   PC24 
 

Figure 19. First 24 PC images of AVIRIS image data. 
 

        
Figure 20. Scatter plots of PC bands of AVIRIS image data (a) band 1 versus band 2 

and, (b) band 2 versus band 3. 
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The same procedure is followed for the HYDICE scene.  A forward PC 

transformation is applied to the data using the covariance matrix and, as in the AVIRIS 

image, the scree graph of the eigenvalues is plotted and is shown in Figure 21, with 

details given in Table 3, and the first 24 PC images given in Figure 22. 

 
Figure 21. Scree graph for HYDICE data using the covariance matrix (a) 220 

eigenvalues and, (b) the first 25 eigenvalues (y-axis is logarithmic). 

 

The determination of the intrinsic dimension of the data is not clear in the scree 

graph, because there are two points at which the slope drops, after the third and the 

seventh eigenvalue.  However, a visual inspection of the transformed images gives results 

similar to those found with the AVIRIS data.  The first component appears as a black and 

white (monochrome) photograph of the scene; and the second PC image represents water 

depth variations.  The fourth PC image largely completes the representation of the scene, 

 

 
PC1   PC2   PC3   PC4 
 

 
PC5   PC6   PC7   PC8 
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PC9   PC10   PC11   PC12 
 

 
PC13   PC14   PC15   PC16 
 

 
PC17   PC18   PC19   PC20 

 

 
PC21   PC22   PC23   PC24 
 

Figure 22. First 24 PC images of HYDICE image data. 

 

 

bringing the total variability up to 99.61% of the total image variability.  The transform 

images start to become noisy from band 5 on, as vertical strips appear on the left side of 

the image.  Higher PC images contain increasingly more noise and almost no additional 

information, as represented in PC images higher than 14.  The PC images indicate that 

HYDICE data contain more noise than AVIRIS data for these scenes. 

The procedure is repeated for Hyperion data.  Again, the eigenvalues of the 

covariance matrix are plotted in Figure 23, additional information is shown in Table 3, 
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and the first 24 PC images are presented in Figure 24.  There are significantly more 

artifacts in Hyperion data, at least in part due to calibration issues (gains and offsets, bad 

pixels). 

 

 
Figure 23. Scree graph for Hyperion data using the covariance matrix (a) 210 

eigenvalues and, (b) the first 25 eigenvalues (y-axis is logarithmic). 

 

In the scree graph there are two significant abrupt changes in the curve, as with 

the HYDICE data, indicating the cutoff points for determination of the retained 

components.  These are the second and tenth eigenvalues.  From observing the PC 

images, it is obvious that the image data is very noisy, as vertical lines begin to appear 

even for the first PC image.  This is mainly instrumental noise.  With the exception of the 

tenth PC image, which is a good representation of the overall scene, the images above PC 

2 do not provide significant information about the scene, as they contain much noise.  Of 

note is that the information distribution is quite different from the airborne sensors.  

Table 3 shows that PC 1 only contains 47.99% of the scene's variance, which is quite 

unusual for spectral imagery. 

 
 PC1  PC2         PC3   PC4  PC5 
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 PC6  PC7          PC8   PC9  PC10 

  
 PC11  PC12          PC13   PC14  PC15 

 
 PC16  PC17           PC18   PC19  PC20 

 
 PC21  PC22             PC23  PC24  PC25 

Figure 24. First 24 PC images of Hyperion image data. 
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For these three image data sets, AVIRIS, HYDICE and Hyperion, the basic PCA 

transformations lead to similar results.  However, some useful points can be brought out 

concerning the relationship between the quality of data and the basic PCA 

transformation.  AVIRIS data is considered the least noisy of the 3 while the Hyperion 

data is the noisiest.  First of all, the scree test works better on the high quality images 



because when excessive noise is present in the data, the eigenvalue curve does not exhibit 

a single cutoff point but several abrupt changes occur.  In the images under examination, 

AVIRIS data clearly provide one cutoff point in the scree graph, while the Hyperion data, 

which contain more noise, provide two cutoff points.  Additionally, the PC images 

between the two cutoff points are generally noisy.  Second, instrumental noise, resulting 

in stripping, begins to appear earlier in noisy images, as in the Hyperion data, in which 

almost all PC images above 2 are noisy.  Third, only a few PCs are needed for 

representation of the image, as higher PC bands depict very little additional information 

about the scene.  This was expected based on the data contained in Table 3 which shows 

that even when data are noisy, like in Hyperion imagery, components above 10 account 

for much less than 1% of the total variability of the scene.  Finally, the first PCs typically 

account for different physical properties of the earth's surface.  Therefore, a PC band can 

sometimes clearly represent specific materials, even though the image data under 

consideration does not represent other materials of the scene very well.  For example in 

AVIRIS data, in the 2nd PC image the streets are distinguished better than in the 3rd PC 

image, but the intrinsic dimension is determined to be 3 because other scene elements are 

represented by the 3rd band.  This is very important in target detection applications, in 

which the aim is the enhancement of the contrast for specific materials in the image or, in 

other words, for information extraction. 

3. MNF Transform 

The MNF operation is illustrated here for AVIRIS, HYDICE, and Hyperion 

image data.  The images are the same as those used above to illustrate the basic PCA 

transform.  In this application of the MNF transform the noise is estimated using a 

technique of 
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AVIRIS DATA HYDICE DATA HYPERIAN DATA  
PC 
# 

 
Eigenvalue 

% 
Cumulative

variance 

 
Eigenvalue 

% 
Cumulative 

variance 

 
Eigenvalue 

% 
Cumulative 

variance 
1 85531426.539128 81.80 2.2659e+008 80.93 4372.0504 47.99 
2 17586259.388255 98.61 4.5947e+007 97.22 876.6685 57.61 
3 1076614.573476 99.64 4.1209e+006 98.69 719.4716 65.51 
4 151237.433474 99.79 2.5791e+006 99.61 702.1741 73.21 
5 75873.569152 99.86 244746.6073 99.83 680.0629 80.68 
6 31213.724099 99.89 69675.5509 99.89 661.5558 87.94 



7 24944.028624 99.91 40779.5276 99.92 649.3169 95.07 
8 20960.387428 99.93 16137.4217 99.94 156.0809 96.78 
9 13075.510052 99.95 11186.7101 99.95 115.8653 98.05 

10 8905.690938 99.96 7981.7748 99.96 54.8690 98.65 
11 6970.305231 99.96 5026.4881 99.96 23.7076 98.91 
12 5306.499575 99.97 3271.6278 99.96 15.0095 99.08 
13 4679.826547 99.97 3222.4394 99.97 12.3055 99.21 
14 4204.588787 99.98 2454.7777 99.97 8.9790 99.31 
15 3494.759208 99.98 2345.3105 99.97 6.2356 99.38 
16 2186.826167 99.98 2099.9917 99.97 5.9404 99.44 
17 1919.274709 99.98 1864.2828 99.97 4.9514 99.50 
18 1470.764610 99.98 1628.2456 99.98 4.5587 99.55 
19 1307.067302 99.99 1421.5678 99.98 4.3476 99.60 
20 1209.950906 99.99 1293.2154 99.98 3.1828 99.63 
21 1113.643045 99.99 1237.9501 99.98 2.7205 99.66 
22 944.623468 99.99 1013.2552 99.98 2.3373 99.69 
23 617.097175 99.99 970.5755 99.98 2.2495 99.71 
24 551.599832 99.99 931.0077 99.98 1.9431 99.73 
25 464.492358 99.99 863.7067 99.98 1.8763 99.75 

 
Table 3. Eigenvalues and cumulative percentage of the covariance matrix in the 

basic PCA transform for AVIRIS, HYDICE, and Hyperion images. 
 

differencing of neighbor pixels.  This approach assumes that on average, those adjacent 

pixels contain the same signal, differing only by an amount which is indicative of the 

noise level.  Table 4 presents the eigenvalues and the corresponding cumulative variances 

for the three images, and Figures 25, 26, and 27 present the first eigenimages for the 

transformed AVIRIS, HYDICE, and Hyperion data, respectively. 

From the AVIRIS MNF transformation results, Table 4 indicates that the first 11 

eigenimages are the coherent images, with the remaining eigenimages primarily 

containing noise.  In particular, the eigenvalue for each of the first 11 eigenimages is 

greater than 5.  The eigenvalues for the remaining eigenimages are lower and are all close 

to one.  Per earlier discussion, when using the MNF transform, this is the criterion for 

setting the dimensionality of the data set.  As with the PCA transform, the determination 

of the inherent dimensionality of the data also requires visual inspection of the 

eigenimages. 
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Figure 25 shows that the first two eigenimages have very little integrity as images 

– a curious feature which seems to be normal for the MNF transform – the first bands are 

dominated by instrument artifacts, not the desired signal.  MNF band 3 shows much 

higher image quality, and the 4th eigenimage provides a good representation of the scene, 



as streets and variations in water depth are well distinguished but ground features are not 

distinct.  In band 5 land cover is distinguished, but variations in water depth are not well 

represented.  Bands 7 and 8 are similar to band 5.  The 9th eigenimage is more 

informative about the overall scene as both land and water depth can be seen clearly.  

Instrumental noise begins to appear again in band 10 and, from this point on, the image 

quality slowly decreases.  However, the noise level is low enough, until the 22nd 

eigenimage, that basic features of the scene are distinguishable.  Higher number 

eigenimages contain significant noise and do not appear to provide any more information.  

The intrinsic dimensionality of the image is determined to be 9 in this case. 

The MNF transform for the HYDICE image data results in 15 eigenvalues that are 

above 5.  These bands should contain useful information.  Examination of the 

eigenimages shows that instrumental noise again appears in the first eigenimage, in this 

case as horizontal stripes.  Instrumental artifacts (vertical striping) appear again 

beginning in eigenimage 5, and although variations in water depth are well represented, 

the coastline is not clear.  Eigenimages contain significant noise from band 8 and up, and 

the image quality is poor.  Finally, the best representation of the overall scene is provided 

by band 6. 

Hyperion data are noisier and the intrinsic dimensionality is 6, based on the 

eigenvalues of Table 4.  Visual observation of the eigenimages shows that instrument 

artifacts appear again in the first two bands.  Additionally, bands 3 to 6 contain vertical 

striping, but the underlying information is recognizable.  From band 7 and up, striping 

and noise become severe, resulting in poor image quality. 

In comparing the MNF and basic PCA transformation results, some useful points 

can be derived.  First, the MNF transformation orders eigenimages in decreasing image 

quality, excluding the first two images.  The first 2 bands contain little scene information.  

For the standard PCA, higher order PC eigenimages may provide useful scene 

representations, and local information can be missed when high PC components are 

discarded.    
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AVIRIS DATA HYDICE DATA Hyperion DATA  
PC 
# 

 
Eigenvalue

% 
Cumulative 

variance 

 
Eigenvalue 

% 
Cumulative 

variance 

 
Eigenvalue 

% 
Cumulative 

variance 
1 114.044 22.35 104.919 17.34 34.506 23.75
2 54.113 32.95   42.659 24.43 21.193 38.33
3 26.046 38.05  27.534 28.99 13.328 47.50
4 23.356 42.63   18.257 32.01 9.397 53.97
5 13.650 45.30   14.420 34.40 8.690 59.95
6 11.089 47.48   11.150 36.25 4.621 63.13
7 8.676 49.18   10.297 37.95 2.733 65.01
8 6.985 50.55     8.446 39.35 2.201 66.53
9 6.781 51.87     6.554 40.43 1.789 67.76

10 5.317 52.92     5.954 41.42 1.655 68.90
11 5.025 53.90 5.813 42.38 1.598 70.00
12 4.013 54.69     5.529 43.30 1.452 70.99
13 3.720 55.42     5.409 44.19 1.407 71.96
14 3.512 56.10     5.251 45.06 1.389 72.92
15 2.968 56.69     5.088 45.90 1.324 73.83
16 2.881 57.25     4.710 46.68 1.287 74.72
17 2.748 57.79     4.647 47.45 1.241 75.57
18 2.458 58.27     4.434 48.19 1.193 76.39
19 2.396 58.74     4.388 48.91 1.166 77.19
20 2.164 59.16     4.287 49.62 1.162 77.99

 
Table 4. Eigenvalues and cumulative percentage of the covariance matrix of MNF 

transformation for AVIRIS, HYDICE, and Hyperion images. 
 

For these two examples, noise and striping start to appear in lower number components in 

the basic PCA compared to the MNF transform.  For the MNF transform, even high 

number eigenimages do not contain striping artifacts.  This is obvious when comparing 

AVIRIS and HYDICE images.  Even in HYDICE data, in which slight horizontal 

stripping appears from the first band in MNF transformation, the noise effects are lower 

in higher number bands in MNF compared with basic PCA.  The MNF transform seems 

to concentrate the instrument artifacts more effectively than the standard PC transform. 
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MNF 1   MNF 2   MNF 3   MNF 4 
 

 
MNF 5   MNF 6   MNF 7   MNF 8 
 

 
MNF 9   MNF 10   MNF 11   MNF 12 
 

 
MNF 13   MNF 14   MNF 15   MNF 16 
 

 
 MNF 17   MNF 18   MNF 19   MNF 20 

 

 
 MNF 21   MNF 22   MNF 23   MNF 24 

 
Figure 25. First 24 MNF images of AVIRIS image data. 
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MNF 1   MNF 2   MNF 3   MNF 4 
 

 
MNF 5   MNF 6   MNF 7   MNF 8 
 

 
MNF 9   MNF 10   MNF 11   MNF 12 
 

 
MNF 13   MNF 14   MNF 15   MNF 16 
 

 
MNF 17   MNF 18   MNF 19   MNF 20 

 
MNF 21   MNF 22   MNF 23   MNF 24 
 

Figure 26. First 24 MNF images of HYDICE image data. 
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              MNF21  MNF22   MNF23       MNF24          MNF25 

 
Figure 27. First 25 MNF images of Hyperion image data. 
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IV. NOISE REDUCTION USING PCA TECHNIQUES 

A. METHODOLOGY 

1. Overview 

The PCA transformation techniques are examined in this section for their 

applicability in reducing noise.  Noise is induced in hyperspectral image data by several 

factors such as sensor's sensitivity, thermal effects, quantization errors, and transmission 

errors.  The noise is typically independent of the data and therefore, for the purposes of 

this thesis, the noise is modeled by adding Gaussian noise to the images.  Also, PC 

techniques are examined for their effectiveness at eliminating striping from hyperspectral 

data. 

A combination of ENVI and MATLAB software was used to construct data sets 

with varying levels of noise.  ENVI was used to manipulate the data into forms that could 

be easily modified by MATLAB.  For example, subset, forward and inversed 

transformations and conversion of image data in various types (e.g. from Bands 

Interleaved by Lines (BIL) to Bands Interleaved by Pixels (BIP)) was done using this 

software.  The hyperspectral images were spectrally subsetted and saved in ASCII 

format.  Then, a MATLAB algorithm was used on the image data to add either Gaussian 

or periodic noise.  The noisy images were then processed in ENVI, again using the PCA 

and MNF transforms.  After analyzing the components produced by the transformation, 

image data were transformed back to the original spectral space.  Figure 28 illustrates a 

general block diagram of this process. 

2. Performance Metrics 

Two main performance metrics are used in this thesis for evaluation of the 

retrieval algorithms: visual interpretation and rms correlation coefficient. 

Visual interpretation of hyperspectral images involves the observation of 

differences between targets and their backgrounds, based on some or all of the following 

visual elements: tone, shape, pattern, texture, and association.  Tone is the most important 

element, as variations in tone allow the shape, texture, and pattern of objects to be 

distinguishable.  Association refers to extracting information about a target of interest by 
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taking into account the relationship between known recognizable objects.  Visual 

interpretation is widely used because it is a quick method for interpreting the data, but it 

is not an easily quantifiable approach.  Although visual interpretation is a powerful tool 

for a quick evaluation of the image data, more accurate metrics are necessary. 
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Figure 28. Representative block diagram of noise reduction techniques. 

 

The rms correlation coefficient is a typical quality measure that is used in 

evaluating the performance of retrieval algorithms for image data.  The rms correlation 

coefficient between two images is calculated by first computing the band to band 

correlation coefficient between the corresponding bands from the original and the 

reconstructed image, and then, adding the band to band correlation coefficients and 

dividing by the total number of bands.  This resulting number is the rms correlation 

coefficient. 

In addition to the above performance metrics, spectral comparison and 

classification are used to characterize the two PC techniques under investigation.  

Spectral comparison is done for specific areas of interest within the images, comparing 

the original image data and the retrieved image data.  This is done using ENVI areas of 

interest, or regions of interest (ROI).  ROIs are selected and their mean spectra are saved 

in an ASCII file.  These results are imported to MATLAB, and figures containing the 

spectra of interest are created.  Additionally, 2-D scatter plots are used for specific bands  
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in order to illustrate spectral restoration.  Finally, a simple classifier, which is a typical 

remote sensing method, is used for the purpose of showing the effectiveness of PC 

techniques in noise removal. 

B. IMAGE RESTORATION - RANDOM NOISE 

The principal component transform has the characteristic of separating the signal 

and noise found in spectral imagery.  This suggests that the PC transform can be used to 

remove noise from spectral data.  The idea is to perform a forward transform, remove the 

noisy bands, and then invert the transform.  This should remove the noise from the data.  

In this section the utility of PCA techniques when random noise is present is investigated.  

The AVIRIS and HYDICE images that were used in Chapter III are again used for the 

demonstration.  The AVIRIS image in this experiment was divided into 65 bands 

covering the spectrum from 0.4 to 1.0 µm.  This was done to reduce the data volume, but 

does not limit the applicability of the analysis. 

The procedure explores the addition of Gaussian noise to spectral radiance image 

data.  Noise at two variance levels, 300 and 600 are explored.  Based on the dynamic 

range of the data, the noise is approximately 10 and 20 percent respectively for the two 

variance levels.  Figure 29 shows the 20th band (588.58 nm) of the original and the noisy 

images.  It is clear that noise, even in the case of a variance equal to 300, is significant 

and as the variance increases the noise also increases in the image. 

The first seven PC's generated by transformation of the original and noisy images 

are shown in Figure 30.  The first PC's produced by the original data are noiseless, and 

information is depicted clearly.  In contrast, starting with the third PC, the PC's produced 

from the noisy images contain much noise compared to the original PC's.  

Noise levels are higher, of course, in the images where the random noise level is 

higher.  The noise appears higher in the PC chain for these noisy data.  This was expected 

because PC images are ranked by variance and hence larger variance of noise means that 

noisy components will appear in a lower component number in the PC's.  Although noise 

starts to dominate in the third PC, a large fraction of the scene information is preserved in 

the first two PCs.  This is an indication that retrieval of the original image data is possible 

without losing significant information. 
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           (a) 

 

         (b) 

 

        (c) 

Figure 29. The 20th band of the AVIRIS images: a) original b) noisy with variance 
300 and c) noisy with variance 600. 
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PC1             PC1           PC1 

 
PC2             PC2           PC2 

 
PC3             PC3           PC3 

 
PC4             PC4           PC4 

 
PC5             PC5           PC5 

 
PC6             PC6           PC6 

 
PC7             PC7           PC7 

   (a)            (b)          (c)  
Figure 30. The first 7 PC components of the AVIRIS images: (a) original (b) noisy 

with variance 300 and (c) noisy with variance 600. 
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The MNF transform is based on the signal-to-noise ratio of the imagery, so we 

expect interesting results in tests of the MNF transform as we study the effect of noise.  

Figure 31 shows the first 7 MNF components produced by the images under 

investigation.  Results are similar to those found for the PC transformation.  MNF 

components 3 to 8 of the original image do not contain noise while noise is significant 

from the third MNF component on in the noisy transformed images.  Also the noise is 

higher in the MNF eigenimages generated by the data with larger noise variance.  Finally, 

in the first two MNF components, the eigenimages produced from the noisy data show 

some differences compared to those produced from the original data.  In particular, the 

first MNF component of the less noisy image and the second of the higher noisy image 

show significant differences in the brightness of the main areas of the scene.  The polarity 

of the scenes has changed.  In the first MNF component of the less noisy image, the sea is 

represented with a dark grey color, almost black, while in the original image it is mostly 

represented by a light grey, almost white.  However, this does not affect the performance 

of the transformation because the features that are depicted in these MNF components are 

similar.  Figure 32 shows a scatter plot of the MNF first bands between the original and 

noisy data for a variance of 600.  It is obvious that the first two MNF bands are highly 

correlated, meaning that the first two bands do not contain much noise.  In contrast, the 

original MNF band 3 versus the noisy MNF band 3 are uncorrelated, which indicates that 

the noisy MNF band 3 is dominated by noise. 

Figures 30 and 31 reveal that PC and MNF transformations perform comparably 

in both low and high levels of noise.  The unknown is, again, in estimating the number of 

components to be used in order to retrieve the original data.  Based on both visual 

observation and the eigenvalues diagram it is concluded that 4 or 5 components must be 

kept in the case of low variance noise and 2 or 3 in the case of high variance. 

Proceeding forward, the inverse transform is applied for 1 to 10 components from 

the transform space.  The effectiveness of the approach is tested by calculating the rms 

correlation between the original data and the de-noised data.  Table 5 presents the rms 

correlation coefficients between the original and the retrieved data.  There is an optimum 

number of components in each case – too many components cause excessive noise to be  
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MNF1            MNF1           MNF1 

   
MNF2             MNF2          MNF2 

   
MNF3            MNF3           MNF3 

   
MNF4             MNF4           MNF4 

   
MNF5             MNF5           MNF5 

   
MNF6             MNF6           MNF6 

   
MNF7             MNF7           MNF7 

   (a)            (b)          (c)  
Figure 31. The first 7 MNF components of the AVIRIS images: (a) original (b) noisy 

with variance 300 and (c) noisy with variance 600. 
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included.  The optimum correlation coefficients for a low-level noise variance of 300 

occurs with the 4th PC and 6th MNF components, with values 99.6845 and 99.5760, 

respectively.  Also, in the case of a noise variance of 600 the optimum correlation 

coefficients occur with the 2nd and 4th PC and MNF components, with values 99.2562 

and 98.9743, respectively.  The PC transform seems to be more effective than the MNF 

transform, which is somewhat unexpected.  Note, however, that the rms correlation is 

very low for the case when only the first MNF band is used.  Recall that the first MNF 

band frequently exhibits noise and instrument artifacts. 
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Figure 32.  Scatter plots of MNF bands of AVIRIS original vs. noisy with variance 
600 image data (a) band 1 vs. band 1, (b) band 2 vs. band 2 and, (c) band 3 vs. band 3. 
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RMS correlation coefficients 
Variance = 300 Variance = 600 Number of 

components 
retained 

PC MNF PC MNF 

1 91.8515 67.0650 91.6965 74.2586 
2 99.5795 98.8010 99.2562 98.9469 
3 99.6626 99.9400 99.1726 98.9660 
4 99.6845 99.4766 99.0166 98.9743 
5 99.6418 99.4412 98.7908 98.7440 
6 99.5957 99.5760 98.5515 98.5638 
7 99.5445 99.5385 98.3240 98.3537 
8 99.4712 99.4794 98.0781 98.0978 
9 99.3781 99.3662 97.7673 97.8857 
10 99.3062 99.2986 97.5310 97.5787 
65 96.0710 96.0710 87.2318 87.2318 

 

Table 5. RMS correlation coefficients for original vs. retrieved AVIRIS image data 
using PCA or MNF transform for two values of noise variance, 300, and 600. 

 

The rms calculation shows the results of the technique on a statistical basis.  A 
more detailed comparison is performed next, by looking at distinct spectra. 

In Figure 33, spectra from a region of interest (ROI) in the retrieved, the noisy, 

and the original images are shown.  The ROI is from the open water area of the AVIRIS 

image.  This is a fairly dark region and already has a relatively low SNR.  In the blue 

region (bands 1-20) the AVIRIS data have high radiance values (from 800 to 2,500) 

while at longer wavelengths (bands 45-65 at 798.46 to 990.53 nm) low radiance values 

are found (from 0 to 250).  Two remarks concerning this figure are worth mentioning.  

First, the approach used here, with a noise level independent of wavelength, produces a 

variable SNR as a function of wavelength.  For this ROI, there is a dramatic influence 

above the 45th band while the shape of the spectrum is almost unaffected in bands 1 to 

20.  The other remark is that both PCA and MNF are effective in restoration of the 

original spectra.  The retrieved spectra for the ROI are very similar to the original as the 

spikes created from the noise in bands 45 to 65 have been dramatically smoothed.  

Finally, PCA and MNF perform comparably in performing noise elimination, and it is not 

possible to make an assessment of which method is better. 
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Figure 33. Spectra from an open sea area from the AVIRIS image for the original, 
noisy, and retrieved spectra using PCA and MNF transformation (bands 1 to 20 (upper 

figure) and bands 45 to 65 (lower figure)). 

 

The above results for the performance of PC techniques in eliminating noise were 

duplicated with the HYDICE and Hyperion data.  Several cases were examined, as with 

the AVIRIS data, by adding Gaussian noise.  As an example, in Figure 34, the 10th band 

of the original, noisy, and retrieved HYDICE image data are presented.  The retrieved 

images were obtained using the inverse transform, keeping the 5th and 6th PCA and 

MNF components, respectively.  The retrieved images are good representations of the 

scene, and important information is clearly depicted, as the noise has been significantly 

reduced.  Finally, both the PCA and MNF transforms perform comparably.  Additionally, 

the above results were confirmed from the rms correlation coefficients.  Table 6 shows 

these coefficients for original versus retrieved HYDICE and Hyperion image data using 

the PCA or MNF transform for noise variances of 300 and 150, respectively. 

 

 
64 



  
        (a)      (b) 

  
        (c)      (d) 

Figure 34. The 10th band of the follow HYDICE images: (a) original (b) noisy with 
variance of 300 (c) retrieved using PCA and keeping 5 components and, (d) retrieved 

using MNF and keeping 6 components. 
 

RMS correlation coefficients 
HYDICE Hyperion Components 

retained PC MNF PC MNF 
1 85.5246 49.8666 58.3970 53N885 
2 98.0261 96.4605 59.1403 59.1268 
3 98.8128 98.6977 59.2571 59.1499 
4 98.9466 98.7680 59.2822 59.1605 
5 98.9947 98.8416 59.3903 59.2111 
6 98.7127 98.9647 59.3612 59.2279 
7 98.5376 98.8122 59.3433 59.2338 
8 98.3447 98.5583 59.3125 59.2042 
9 98.0925 98.2623 59.2603 59.2569 
10 97.8417 97.8743 59.2247 59.2053 
65 86.6356 86.6356 57.5643 57.5643 

 
Table 6. RMS correlation coefficients for original vs. retrieved HYDICE and 
Hyperion image data using PCA or MNF transform for noise variance, 300 and 150 

respectively. 
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In the experiments conducted above the noise level was kept constant as a 

function of wavelength.  In this section, the effect of non-isotropic noise is considered.  

The design of this experiment is to investigate PC methods when noise exists in all bands 

but is significantly higher in one band.  The same subset of 65 bands from the AVIRIS 

scene is used, covering the spectrum from 0.4 to 1.0 µm.  A noise variance of 300 is 

added to all the bands, except for the 20th band in which noise with variances of 600 and 

900 are tested. 

Figure 35 shows the first five PC components of the image data for the two cases 

of higher noise in one band and also for the same level of noise in all bands.  In both 

cases of higher noise in one band the 3rd principal component is dominated by noise 

while the rest of the components are similar with the components produced when the 

noise is the same in all bands.   

Table 7 shows the rms correlation coefficients for each case.  Based on these 

results, for both PCA cases with anisotropic noise, five components should be retained.  

This choice gives the retrieved data the closest rms correlation to the original data.  By 

keeping five components, noise is reduced for all bands except band 20.  This appears to 

be due to the noisy 3rd PC.  In order for the 20th band to be cleared of noise, the 3rd PC 

must be excluded.  Excluding the 3rd PC not only eliminates the noise from the 20th 

band, but also raises the rms correlation coefficient.  Specifically, when the noise 

variance in the 20th band is 900, by excluding the 3rd component, the rms correlation 

coefficient rises to 99.6760 from 99.5540. 

Figures 36 and 37 show the impact of the noise/denoise process on the 20th band.  

Images of the original data without noise (a), with noise (b), and then denoised (c) and (d) 

are shown in Figure 36.  Images are shown for inverse transforms using bands 1-5 and 

then excluding band 3.  Figure 37 shows a scatter plot of the original band 20 and the 

processed data.  The improvement in the correlation is dramatic.  The restoration of the 

original image data is obvious.   
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PC1             PC1           PC1 

 
PC2             PC2           PC2 

 
PC3             PC3           PC3 

 
PC4             PC4           PC4 

 
PC5             PC5           PC5 

  (a)            (b)          (c)  
 

Figure 35. The first 5 PC components of the AVIRIS images: (a) noisy with variance 
300 in all bands (b) noisy with variance 300 in all bands except band 20 in which 

variance is 600 and (c) noisy with variance 300 in all bands except band 20 in which 
variance is 900. 

 

The effectiveness is also demonstrated by comparing the rms correlation coefficients 

shown in Table 7.  The results are similar to those obtained for the cases of isotropic 

noise.  The correlation coefficients are 99.6847 % and 99.6760 % for the isotropic and 

anisotropic noise cases, respectively.  By contrast, when the third PC component is kept, 

the correlation coefficient of the retrieved image is lower, with a value of 99.5540.  The 
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difference in the correlation coefficients corresponds to the impact of the 20th band.  The 

0.122 difference is the difference in correlation coefficients between the original 20th 

band and the noisy ones with variance of 300 and 600.  That means the exclusion of the 

third noisy PC does not affect the scene information, it omits only the additional random 

noise contained in the 20th band of the image. 

 

RMS correlation coefficients 
Variance = 300 

& in band 20 is 600 
Variance = 300 

& in band 20 is 900 
Number of 
component
s retained PC 1 PC 2 MNF PC 1 PC 2 MNF 

1 91.8480 --- 67.0543 91.8420 --- 67.0520 
2 99.5752 --- 98.8000 99.5674 --- 98.7998 
3 99.4528 --- 98.9394 99.3246 --- 98.9392 
4 99.5326 99.6546 99.4878 99.4074 99.6502 99.4895 
5 99.5540 99.6760 99.4631 99.4291 99.6718 99.4677 
6 99.5092 99.6312 99.5711 99.3843 99.6271 99.5700 
7 99.4632 99.5851 99.5346 99.3383 99.5811 99.5337 
8 99.4118 99.5338 99.4755 99.2871 99.5298 99.4746 
9 99.3186 99.4405 99.3620 99.1938 99.4365 99.3611 
10 99.2448 99.4403 99.2945 99.1198 99.3626 99.2934 

 

Table 7. RMS correlation coefficients for original vs. retrieved image data using 
PCA or MNF transform for noise variance 300 in all bands except of 20th band in which 
variance is 600 or 900. In PC 1 all the components are retained while in PC 2 the noisy 

component is excluded. 

 

The MNF transformation also performs well when the noise is higher in one band.  

In Table 7 the correlation coefficients show that the addition of higher noise in one band 

does not affect the performance of MNF transformation.  In both cases of higher noise, 

the best correlation coefficient is obtained by keeping six MNF components.  

Additionally, in the retrieved images the 20th band does not contain noise. 

Figure 37 shows the results for both the PC and MNF inversions.  The scatter 

plots, (a) and (b), show that the retrieved 20th band is extremely noisy when the noisy 

principal component is not excluded – in fact no improvement is found in the inversion 

process.  The noise has not been eliminated.  In contrast, the scatter plot (c) between the 
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original and the PCA transform obtained by excluding the noisy component is a diagonal 

line which means that this band has been cleaned up.  Finally, the last scatter plot shows 

that in the MNF transform the noise has also been eliminated and thus, the MNF 

transform performs comparably with the PCA transform when the noisy component is 

excluded. 

In this experiment a basic difference between PCA and MNF has been revealed.  

That is, the component images in PCA are arranged based on variance, while in the MNF 

transform they are arranged in decreasing order of image quality.  In this case, the 

variances did not reflect the real SNR due to the disparity of the noise variance in 

different bands.  In the PCA transform, the 3rd component has a larger variance than the 

4th component, but it also has a lower SNR. 

 

 
        (a)      (b) 
 

 
   (c)     (d) 

Figure 36. The 20th band of the follow AVIRIS images: (a) original without noise (b) 
noisy with variance 300 in all bands except band 20 in which variance is 900 and (c) 
retrieved image by keeping the 1st, 2nd, 4th, and 5th principal components (d) retrieved 

image by keeping the first five components. 
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  (a)      (b) 
 

         
  (c)      (d) 
 

Figure 37. The scatter plots of the 20th band (588.5800 nm) between the original 
AVIRIS image and the following images: (a) noisy with variance 300 in all bands except 

band 20 in which variance is 900 and (b) retrieved PCA image keeping the 1st, 2nd, 4th, 
and 5th components (c) retrieved PCA image keeping the first five components and (d) 

retrieved MNF image keeping the first six components. 
 

Based on the above discussion, noise removal is effective using PC techniques 

and generally PC and MNF transformations perform comparably.  As a second method of 

testing the validity of the image retrieval approach, a simple Spectral Angle Mapper 

(SAM) classifier is tested on the various data sets. 
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As an illustration of noise removal using PC techniques, Figure 38 shows the 

original, noisy, and retrieved data using a simple classifier.  Five classes are defined, 

open water, man-made materials, soil, grass, and mountains.  The noisy image is the one 

with a noise variance of 300, and the retrieved image is made by using an inverse PCA 

transform and keeping five components.  The retrieved classified image is similar to the 

original, while the noisy classified image is very dark, and the discrimination of various 

features is not possible.  Additionally, Table 8 shows the error classification matrix.  

Each column in the matrices represents a ground truth class, and the values in the column 

correspond to the classification image’s labeling of the ground truth pixels.  For example, 

in the soil class there are 127,943 pixels in the ground truth image.  In the retrieved PC 

image 115,221 pixels have been classified correctly, 1,050 pixels have been classified as 

man-made material, and 11,672 pixels were unclassified.  The overall accuracy - that is 

the number of pixels classified correctly divided by the total number of pixels - is 87% 

for the retrieved data and 22% for the noisy data.  This means the PC retrieval of 

corrupted data was successful. 

C. IMAGE RESTORATION IN PERIODIC NOISE 

PC and MNF transforms are clearly affected by instrumental artifacts, particularly 

gain/offset errors in focal plane calibration.  This type of instrument artifact (along with 

bad pixels), produces a characteristic striping in push-broom scanners.  In this section, the 

ability of PC techniques to remove undesirable stripping is investigated.  Data from 

AVIRIS are used again.  Since the AVIRIS imager is largely free from this artifact, only 

the striping effects, which are intentionally created, should be present.  The subsetted 

scene is again used, comprised of bands from 0.4 to 1.0 nm.  Using a MATLAB 

algorithm, horizontal lines were added to the images, and correspond either to gain or 

offset errors.  This algorithm creates lines either by adding a constant value or by scaling 

all brightness values of the pixels of one, or more than one, of the lines in an image.  The 

procedure used above is repeated.  The images were transformed to PC or MNF space, 

the optimum number of retained PC components images were then transformed back into 

the original space, using the inverse transform, and results were observed. 
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   (a)      (b) 

 

 
   (c) 

 
Figure 38. AVIRIS classification images using a simple classifier: (a) original image 

(b) noisy image with variance 300 (c) inversed PCA image retaining five components. 

 

For the investigation of gain effects, three different factors were used in this 

experiment, 1.3, 1.5, and 2.0.  Several combinations of different numbers of lines and 

bands were examined for each factor.  For example, in the 20th band (588.580 nm), one, 

three, and nine lines were added.  Also, three lines and nine lines were added to the 50th 

and 20th bands, respectively.  Figure 39 shows the original and corrupted data for the 

case with lines altered by a gain factor of 1.5.  The 20th band is shown in which three 

horizontal lines have been added. 

The transformation of image data to PC space shows that the value of the gain 

factor and the total number of noisy lines affects the number the of PC component in 

which lines will appear.  For example, in the case of 1 line in the 20th band (588.580 
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nm), strong lines first appear in the 5th, 6th, and 11th PC components for corresponding 

factors of 2.0, 1.5, and 1.3.  This is illustrated in Figure 40. 

 
CLASS Unclassified Manmade 

materials 
Grass Open 

water 
Soil Mountains Total 

Unclassified 45775 6179 15 2146 11672 454 66241
Manmade 7647 51551 0 0 1050 0 60258

Grass 21 0 456 0 0 0 477
Open water 4023 0 0 53038 0 0 57061

Soil 5253 802 0 0 115221 0 121276
Mountains 824 0 0 0 0 8241 9065

Total 63543 58532 471 55184 127943 8695 314368

(a) 
CLASS Unclassified Manmade 

materials 
Grass Open 

water 
Soil Mountains Total 

Unclassified 63538 57892 165 55184 127942 2637 307358
Manmade 0 640 0 0 0 0 640

Grass 0 0 306 0 0 0 306
Open water 0 0 0 0 0 0 0

Soil 0 0 0 0 1 0 1
Mountains 5 0 0 0 0 6058 6063

Total 63543 58532 471 55184 127943 8695 314368

(b) 

Table 8. Error classification matrix using the AVIRIS original data as 

ground truth image (a) inversed PCA image retaining five components (b) noisy image 

with variance 300. 

 
  (a)      (b) 

Figure 39. The 20th band (588.5800 nm) of an AVIRIS image: (a) original image data 
(b) corrupted image data with 3 horizontal lines of gain factor 1.5. 
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As shown in Figure 40, in the case of 3 lines in 20 bands from the 11th to 30th 

band (500.140 to 687.000 nm), a total of 3 x 20 = 60 lines, lines appear first at the 2nd 

and 5th PC’s for corresponding factors of 2.0 and 1.3.  Moreover, the lines that appear in 

the 5th PC, for the case of a gain factor of 1.3, are stronger compared to those that appear 

in the 2nd and higher components, for the case of a gain factor of 2.0.  Therefore, a high 

gain factor or large number of lines results in lines appearing in lower PC components.  

Additionally, the number of PC components that can be kept depends on the gain factor 

and on the number of lines in the test image.  This is because retaining PC components 

that have strong lines will result in these lines also appearing in the retrieved images. 

 

  
 PC1   PC2   PC1      PC2 

 
 PC3   PC4   PC3      PC4 

 
 PC5   PC6   PC5      PC6 

 
Figure 40. The first six PC components of an AVIRIS image that has been corrupted 
by three horizontal lines in each band from 11th to 30th for two different gain factors: (a) 

gain factor 1.3 (the two left columns) and (b) gain factor 2.0 (the two right columns). 

 

On the other hand, the MNF transform shows less sensitivity to variations in the 

number of lines and the gain factor.  In all cases, MNF images yielded strong lines first 

appearing in the 9th, 10th, or 11th MNF component, irregardless of the number of lines or 

gain factor.  These results indicate that the PC transform does not work as well because,  
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in order to eliminate striping, only 3-4 PC components can be retained in the inverted 

image.  This low number of PC components may not properly represent all the details in 

the scene. 

As a result, significant information may be lost.  The MNF transform performs 

better, since a larger dimensionality may be retained in that transform space.  By keeping 

the first 8 MNF components, striping is eliminated in the inverted image, and the number 

of retained components is enough to retain all significant information.  The performance 

of MNF compared to PCA is illustrated in Figure 41, in which the noisy and the retrieved 

images, for the two different cases, are shown.  In this example, the initial noisy image 

has three striping lines and a gain factor of 1.5, and the MNF image, retrieved by keeping 

8 components, does not have any lines.  By contrast, the PCA image, retrieved by 

keeping 5 components for the inverse transformation, is dominated by striping.  

Additionally, the lines that appear are stronger than the initial lines in the retrieved image 

using the PCA inverse transform.  In both the PCA and MNF, the higher components, 

usually above the 10th, are dominated by striping. 

  
   (a)      (b) 

Figure 41. The 20th band of an AVIRIS image that have been corrupted by three lines 
in bands 11 to 30 using an offset factor of 2,000.  Image data have been restored as 

follows: (a) using PCA transformation and retaining 5 components, and (b) using MNF 
transformation and retaining 8 components. 
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Following the same procedure as above, the impact of offsets was investigated.  

The same AVIRIS image was modified by adding a fixed value to the brightness values 

of one or more horizontal lines in the image, using MATLAB code.  The addition of a 

constant value, again, results in striping.  Several different combinations of offset values 



and numbers of lines were examined.  The offset values were +600, +1,200, +2,000, and 

+3,000 and 1, 3, 9, or 30 lines, in one, or more bands, were created.  Figure 42 shows two 

representative images, corrupted by lines that have been created by adding an offset 

value. 

 

 
  (a)      (b) 
 

Figure 42. The 20th band of an AVIRIS image that has been corrupted by 3 horizontal 
lines with offset values +2,000 and +3,000 for the images (a) and (b), respectively. 

 

Results for offset errors were similar to those found above for errors in gain.  In 

the PC transform, lines appear in early components depending on the number of lines and 

the offset value.  By contrast, for the MNF transform the eigenimages are not as 

influenced by the offset value or the total number of lines.  In all cases, stripes begin to 

appear after the 8th or 9th component.  In Figure 44, the first ten components of PCA and 

MNF transforms are shown for the AVIRIS image.  The data have been modified for 

bands 11 to 30, by three horizontal lines, with an offset value of 2,000.  In the PC 

eigenimages, slight lines exist in the first two components, while most of the higher 

components are dominated by strong horizontal lines.  Thus, the inverse PC transform 

leads to a retrieved image that retains striping artifacts.  For the MNF transform 

horizontal lines start to appear beginning with the 9th component. 

Inverse MNF transforms with 9 or fewer bands will not have striping.  Therefore, 

as with striping caused by errors in gain factor, the MNF transform performs much better 

than the PCA transform in elimination of striping.  This is depicted in Figure 43, in 

which, restored image data from the corrupted AVIRIS image, are shown.  In the PCA 
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inverse transform 3 components have been kept but strong lines appear.  In contrast, for 

the MNF transform 8 components are retained, and the retrieved image has no striping.  

The MNF transform is uninfluenced by the offset value even in case of a huge offset 

value. 

Finally, the ability of PCA techniques to denoise an image when both Gaussian 

noise and striping exist was investigated.  Several cases were examined with 

hyperspectral images that were modifed by the addition of random noise and horizontal 

lines.  Results indicated that the optimum number of retained components is the smaller 

component that eliminates both striping and noise.  Therefore, when striping is not heavy 

both the PC and MNF transforms perform comparably.  However, when striping is 

significant, fewer bands can be retained for the PC transform as compared to the MNF 

transform, and therefore, the performance of MNF is appears to be superior. 

 

  
 

Figure 43. The 20th band of an AVIRIS image that have been corrupted by three lines 
in bands 11 to 30 using an offset value of 2,000.  Image data have been restored as 

follows: (a) using PCA transformation and retaining 3 components, and (b) using MNF 
transformation and retaining 8 components. 
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 PC1   PC2           MNF1      MNF2 
 

 
 PC3   PC4          MNF3      MNF4 
 

 
 PC5   PC6          MNF5      MNF6 
 

 
 PC7   PC8          MNF7      MNF8 
 

 
 PC9   PC10          MNF9      MNF10 

 

Figure 44. The first ten PCA and MNF components of an AVIRIS image that has 
been corrupted by three horizontal lines in each band from the 11th to 30th with an offset 

value of 2,000.  
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V. CONCLUSIONS 

Principal components analysis is a versatile tool in hyperspectral remote sensing 

which is utilized for various applications such as dimensionality reduction, data 

compression, and noise reduction.  PC and MNF transforms are the two most widely used 

methods belonging to the PCA family of techniques.  In this thesis, an in-depth study of 

these two methods was conducted in order to estimate their performance on hyperspectral 

imagery. 

The basic PC and MNF transformation were primarily investigated using AVIRIS 

hyperspectal data.  However, for completeness, many experiments were conducted using 

two other hyperspectal sensors, HYDICE and Hyperion. 

One of the research goals was the evaluation of the various methods in 

determining the intrinsic dimension of the data for the purpose of dimensionality 

reduction.  The results indicate that the scree test gives the best measure of the number of 

retained components in most cases.  The methods of cumulative variance and the Kaiser 

test seem to perform comparably.  By contrast, the CSD method does not perform well, 

since in all examples, the resultant intrinsic dimension appeared to be too high.  When 

images are quite noisy, all methods seem to fail.  For example, in the scree test, when the 

data are noisy, the determination of the cutoff point is a difficult task.  This is because 

several abrupt changes occur in the eigenvalue diagram.  Therefore, visual inspection of 

the PC images is also necessary both for determining the intrinsic dimension and for 

better estimation of the components which include useful information. 

The analysis also reflected the known tendency for the first component images 

produced by the transformation to reflect scene topography, shadowing, and broad-band 

reflectance.  Therefore, sometimes a PC image can represent specific materials clearly 

even though this image does not represent other materials of the scene very well.  This is 

significant in applications like feature extraction and target detection.  For the basic PC 

transform, higher order PC images may better represent image details; data can be missed 

when high PC components are discarded.  This is because basic PCA assumes no a priori 

knowledge of the scene and is concerned only about variances with respect to 
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decorrelating the data.  In contrast, the MNF transform orders component images in 

decreasing image quality based on SNR. 

The performance of PCA methods in noise reduction was examined by corrupting 

hyperspectral images with noise.  First Gaussian noise, which is the most common, was 

added to those images.  The retrieved images, using inverse transforms, indicate that the 

basic PC and MNF transform perform comparably when noise is white  This is 

reasonable, since the first part of the MNF transform is designed to make the data 

isotropic in noise (that is noise-whitened).  Typically, when using MNF, the optimum 

number of retained components is higher, but the correlation coefficient between the 

retrieved and original data is lower. 

When one band is significantly noisier than other bands, the basic PC method 

results in the presence of one noisy component image among the early components, and 

therefore, this component should be excluded for better results.  The inverse PC 

transform, by excluding the noisy component, does not affect the useful information of 

the data.  It eliminates only the undesirable noise contained in the noisy band.  In 

contrast, when one component is noisier, the MNF transform yields images which are 

ordered in decreasing image quality.  The PC transform arranges bands similarly if the 

noisy component is excluded.   

Second, periodic noise was added to the hyperspectral images using either a gain 

factor or an offset value.  The transformation of image data to PC space shows that the 

value of the gain factor (or the offset value) and the total number of noisy lines affects the 

number of PC component in which lines will appear.  Specifically, a higher gain factor 

(or offset value) and higher total number of lines cause striping to appear in earlier 

principal components.  Thus, fewer components can be retained in the inverse 

transformation.  By contrast, the MNF transform showed less sensitivity to variations to 

the number of lines and the gain factor.  Whatever the number of lines and the gain factor 

was, the first 8 MNF components did not have any striping.  The MNF performs better in 

eliminating the striping compared to the basic PC, because the fewer retained 

components in the PC inverse transform may result in missing useful information. 
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Finally, the ability of PCA techniques to clean up an image, when both Gaussian 

noise and striping exists, was investigated.  Both methods eliminated striping and noise in 

the inverted images, when the retained components were not noisy.  The MNF performs 

better than PC, because more components can be kept when severe striping exists. 
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